
Read This First – Addendum 25th September 2012
Andy Heath 25th September 2012.

Several different approaches to a json binding have been explored in the
construction of this binding. These notes describe the approaches that were
explored and present a rationale for the approach chosen and show the
structure of instances that conform to this binding.. For this draft specification
the definitive json binding is version 4.0 as provided – the earlier versions that
were explored are not provided but the notes for them are provided here to
explain the rationale for the definitive version.

For each of pnp and drd three json schemas are provided

• Core – only core properties and vocabulary values
• Full-strict – full model properties and vocabulary values with no

extensions permitted
• Full-relaxed – full model properties and vocabulary values that permits

extensions in the form documented

I general a matching pair of schemas should be used, though instances that
satisfy a Core schema will also satisfy the corresponding Full-strict and
instances that satisfy a Full-strict will also satisfy the corresponding full-
relaxed.

Note that current javascript libraries do not enforce uniqueness of fields within
an object though the result of allowing such in an instance may not be well-
defined. The json schema provided provided with this binding does not
enforce that unqueness either. A validator that does is under construction.

A validator that might be used to determine whether an instance is valid to this
binding is provided for convenience at

http://afa30.axelafa.com/

Examples of valid and non-valid instances are given in the accompanying
examples.

Notes on approaches to JSON bindings for Access for All 3.0
Andy Heath, Mon 13 Aug 2012 22:43 BST

A number of technical issues arise and experimental “bindings” of IMS AfA 3.0
have been constructed to explore these.

First there is the question of what validation technologies to use for instances
and what to validate them to. Two technologies are of particular value here:

1. There have been several drafts of an IETF JSON Schema
“specification” all of which are out of date. The latest is Draft 3
http://tools.ietf.org/html/draft-zyp-json-schema-03 which expired in May

2011 but is widely used and several libraries implement validation to
(parts of) this specification to different degrees of completeness. There
are some areas where technical interpretation of this draft differs
between different tools, one notably being the support for
Hyperschema and the precise semantics of external schema
extension. Also, in the light of changes between the different drafts
much documentation out there is less than clear and its difficult to find
a single authoratitive clearly-written source on interpretation of matters
in the spec. Nevertheless IETF Draft 3 seems to be the most widely-
implemented JSON specification. It is not without technical issues and
problems. There is some discussion on the internet of a Draft 4 but no
obvious development work on this presents itself.

2. LD-JSON is a specification initiative with the aim of supporting Linked
Data. Its main addition to JSON is lightweight mechanisms for
identifying nodes and contexts that taken together provide similar
mechanisms to that of namespacing in XML. In addition the
specification is providing additional programming language support, for
example with markup to specify sets and lists. Its stated aim is almost
backwards compatibility with traditional json. Features extra to
traditional JSON are specified with additional largely unobtrusive
markup. However, the specification also introduces some important
changes to the semantics of JSON structures (objects and arrays).
These changes have impact for the way the AfA JSON bindings are
modelled, as discussed below. LD-JSON specifications are currently in
draft in W3C, useful resources being http://json-ld.org/spec/latest/json-
ld-syntax/ and http://json-ld.org/

Neither IETF Draft 3 nor LD-JSON alone are without technical challenges for
binding JSON representing AfA 3.0 instances. These are discussed in the
light of the bindings constructed below. They are surmountable but there are
areas where there is no immediately obvious answer as to the best technical
direction to go. All of the bindings constructed are “conformant” to IETF draft
3 and provide a Schema for validation of instances to that draft.

Bindings
This is discussed in terms of pnp instances but the arguments apply equally
well to drd instances.

jsonSchemas3.3

This is modelled to have equivalent structure, names and values as the XML
binding. An example pnp instance might be:

{ "pnp":
[
 { "accessModeRequired" : {
 "existingAccessMode" : "visual",
 "adaptationRequest" : "auditory”
 }
 },
 { "accessModeRequired" : {
 "existingAccessMode" : "visual",
 "adaptationRequest" : "textual"
 }
 },
 { "hazardAvoidance" : "flashing" },
 { "hazardAvoidance" : "sound"}
]
}

One deviation from the XML spec is that the root element in the XML is
currently “AccessForAllUser” whereas in the json draft 3.3 binding it is “pnp”.
It has been modelled here as part of the data instance in order to facilitate
mapping between the json instances and *any* technology, though for use
with AJAX xmlHttpRequest it may be more sensible to not have “pnp” as part
of the data payload (it’s part of the message/protocol). jsonSchemas3.4
provides a Schema for exactly that scenario but which is otherwise identical
with this one.

In traditional json objects are denoted by {} containment and arrays by []
containment. An object is an unordered set of attribute:value pairs, an array
is an ordered list of values. Attribute values (but not attribute names) can be
arrays and array elements can be objects. Array elements do not have to be
unique (a consequence of arrays being ordered) but IET Draft 3 says that
object attribute names within an object SHOULD be unique within that object.
This is important to AfA modelling.

AfA 3.0 specifies that some properties may occur multiple times in an instance
(note that some may not). Both accessModeRequired and hazardAvoidance
are examples in the pnp instance above of properties that occur multiple times
in the instance. To facilitate this, the value of a “pnp” has been modelled as
an array of objects, each of which is a “property” of AfA. By modelling this as

an array we permit multiple instances of each property. An attribute-value
pair cannot be an array element as it is, so each is wrapped as an object to
permit it to be an array element. In the case of accessModeRequired (and
other properties not shown here) the value of the property is also structured
as an object “to keep the sub-fields together”.

However, this is not the end of the story. Modelled in this way (and as will be
clear later in these notes, modelled in any way) its very difficult or impossible
to model a multiplicity of 0..1. We can require a property be present, we can
require it not be present but in this style we cannot say “its there zero or once”
or even “its there exactly once”.

To see the problems this raises the following is an instance that is also valid
by the V3.3 pnp schemas

{ "pnp":
[
 { "atInteroperable" : true },
 { "atInteroperable" : false },
 { "accessModeRequired" : {
 "existingAccessMode" : "visual",
 "adaptationRequest" : "auditory",
 "existingAccessMode" : "textual",
 }
 }
]
}

Note the problems that atInteroperable is present twice and with conflicting
values and existingAccessMode is present twice for the given
accessModeRequired. One solution to this problem would be additional
validation with another technology than JSON Schema to eliminate additional
properties where they should only occur once, such as atInteroperable and
existingAccessMode within accessModeRequired. AfA requires
atInteroperable have a multiplicity of 0..1 and within each
accessModeRequired both existingAccessMode and adaptationRequest
require a multiplicity of 1. Software to do this extra validation, whilst not
completely trivial as it requires (for this binding) a primitive symbol table for
counting occurences with local scope (e.g. inside each accessModeRequired
is a local scope) is perfectly feasible and is under construction.

Other ways to model this and technical approaches being developed in LD-
JSON go some way to alleviating this difficulty but neither completely solves
it. These issues are explored further in the section on the schemas V4.0
binding.

jsonSchemas3.4

These schemas adopt an identical approach to the 3.3 schemas but without
incorporating the “pnp” in the data payload. Everything is moved one branch
up the tree. An instance that validates to the 3.3 schemas, when the outer
object and pnp attribute name is removed, will validate to the 3.4 schemas. An
example instance matching the one given earlier is

[
 { "accessModeRequired" : {
 "existingAccessMode" : "visual",
 "adaptationRequest" : "auditory”
 }
 },
 { "accessModeRequired" : {
 "existingAccessMode" : "visual",
 "adaptationRequest" : "textual"
 }
 },
 { "hazardAvoidance" : "flashing" },
 { "hazardAvoidance" : "sound"}
]

jsonSchemas4.0

In this binding we adopt mechanisms closer to habitual practices of JSON
programmers and best suited to migration to LD-JSON, should that become
the binding of choice. At the same time, the binding works now, with
traditional json.

A mechanism often used by programmers working with JSON where there are
repeated attributes is to wrap the values in an array and eliminate the
repetition. For example, instead of

{ "hazardAvoidance" : "flashing",
 "hazardAvoidance" : "sound" }

we could have

{ "hazardAvoidance" : ["flashing", “sound”] }

We adopt this practice for AfA 3 properties that may occur more than
once in an instance.

In addition, for a property like this that could have several values but having
only one value in some particular instance might be coded by a json
programmer without the array at all, for example

{ "hazardAvoidance" : "flashing" }

So we might have the position that in some instances "hazardAvoidance"
is an array of values, in others it is a string. Dealing with this requires unions
of types, which complicates implementations so we will here adopt the
practice advocated in a recent draft of LD-JSON1 that where AfA has a
property that may occur multiple times we represent its value as an
array, even if the property has only one value.

In addition, in this binding we remove all extraneous levels and model an
instance as a simple JSON object.

This does not solve the problem of repeated properties. The reasons are as
follows:

IETF Draft 3 (and other sources, such as RFC 4627, as referenced by the
group working on LD-JSON - D. Crockford. The application/json Media Type
for JavaScript Object Notation (JSON) July 2006. Internet RFC 4627. URL:
http://www.ietf.org/rfc/rfc4627.txt) require that attribute names (keys) in a
JSON object SHOULD be unique. However, as implemented by common
toolkits such as jQuery and JSV, repeated attribute names are accepted. The
Schemas constructed here (used to validate AfA instances using JSV) do not
require that attribute names are unique and there is no easy way to do so. So
whilst toolkits accept repeated attributes the value on accessing such an
attribute is uncertain. Since attributes in an object are not ordered there is no
way to know which value of a repeated property will be returned.

Arrays do (at least in traditional json2) provide ordering and they also provide
a way that Schemas can specify the minimum and maximum number of items
in an array contained in an instance. By very careful use of structure and
arrays it might be possible to construct an artificial structure for this data that
can be validated to reject multiple occurrences. This would have to specify
every attribute that had only a single value (e.g. existingAccessMode inside
accessModeRequired) as an array having a name property and a value
property and with careful use of maxitems and minitems …. the reality is that
such a structure would be aritificially convoluted just to achieve the validation
and that would not be in keeping with the spirit of JSON object use. The
better approach is a separate layer of validation to eliminate multiple
occurrences of properties. By adopting the practices embodied in this binding
that task is at least made substantially easier because now, we can require
that every property is unique. This extra stage is still needed. Whether LD-
JSON processors can validate to reject instances with non-unique attribute
keys remains to be seen.

1 (http://www.w3.org/TR/2012/WD-json-ld-syntax-20120712/, section 4.8,
“Values of terms associated with a @set or @list container are always
represented in the form of an array - even if there is just a single value that
would otherwise be optimized to a non-array form ..”
2 the situation in LD-JSON is different – arrays are (at current draft) unordered
but a global attribute in the @context section can decree they are all lists,
which are ordered, thus maintaining the traditional json interpretation

To restate the practices we adopt in this binding:

• Every attribute name (key) is unique within the object that it occurs.
Validation for this is done externally to the JSON Schema processing

• Where an AfA property can occur multiple times then the values of each

occurrence are “wrapped” in an array, even where the property occurs
only once

An example pnp instance might be:

{
 "accessModeRequired" :
 [{ "existingAccessMode" : "visual",
 "adaptationRequest" : "auditory"
 },
 { "existingAccessMode" : "visual",
 "adaptationRequest" : "textual"
 }
],
 "hazardAvoidance" : ["flashing", "sound"],
 "educationalComplexityOfAdaptation" : "simplified",
 "atInteroperable" : true,
 "languageOfAdaptation" : ["eng"]
}

Notice the following:

• accessModeRequired occurs once but has multiple values in an array,
each is an object having multiple properties

• hazardAvoidance has multiple values (because in AfA 3.0 it can occur
multiple times) but educationalComplexityOfAdaptation can occur only
once and its value is a string

• languageOfAdaptation has one value which is an array element

(because it could occur in an instance with multiple values).

